Canreef Aquatics Bulletin Board  

Go Back   Canreef Aquatics Bulletin Board > General > Tank Journal

Reply
 
Thread Tools Display Modes
  #1  
Old 07-15-2010, 05:23 AM
abcha0s's Avatar
abcha0s abcha0s is offline
Member
 
Join Date: Jan 2010
Location: Calgary
Posts: 545
abcha0s is on a distinguished road
Default Water Prep and Salt Mixing

This post is part 1 of 2 dealing with water changes. Part 1 focuses on ro/di storage, salt mixing and the general layout of my water room. Part 2 will discuss the Continuous Water Change System.

The Water Room

I don’t have space for a fish room, so I’m calling what I do have a “water room”. This room is in fact my furnace room. It is physically about 10 feet from the aquarium, but there is a door and a hallway in between the two. The furnace room is of average size and is big enough for several reservoirs and all of the ro/di equipment. It also has plumbing for both a water source and a drain.

I do have access to the ceiling from several vantage points. Also, the wall behind the aquarium leads to a closet under the stairs. This means that I can run plumbing or any other system hookups between the two rooms with relative ease.



You can see the water heater and furnace on the right. The wall on the left was just vapor barrier over insulation, so I mounted 3/4" plywood. I sealed the floor with “Kitchen and Bath” caulking. We also did the floor with an epoxy so there is no exposed concrete anywhere. This is the starting point.



The picture above is the room as it is now with everything functional. The rest of the pictures in this post just attempt to show what’s going on.

There are a couple of details worth pointing out in this picture - The first is that the sink is supported by brackets (Lee Valley) rather than legs. These laundry tubs come with really cheap legs that aren’t much good for anything. The bracket also frees up space under the sink for things like salt and buckets. The second detail is the florescent lighting. The room is inherently dark and I think it's important that you can see the water that you are working with.



I’m not a plumber and learning to weld isn’t in the cards. Fortunately, the plumbing in my house is flexible. I used “Shark Bite” fittings for everything which makes plumbing really easy. This picture shows where I tee’d off one of the main lines. I installed a shutoff right after the tee so that I can isolate my plumbing from the rest of the house.



The RO/DI is a key part of the system. The RO unit on the left is an old Kent Marine Maxxima unit that feeds my ATO reservoir. The RO unit on the right is a Vertex Puratek 100GPD unit that is currently only used to fill my RO/DI reservoir for salt mixing. This gives my capacity to change roughly 25% of the total water volume in my tank every day.



The system is pressurized with the use of Lifegard Aquatics Quite One 3000 pumps. I’m not a fan of these pumps but for occasional use where noise (or random failure) isn’t a big deal, they fit the bill. The pumps and reservoirs are isolated with ball valves and knife valves, so replacing a pump is relatively straight forward.

The ro/di reservoir is the one on the left (closest to the wall). The reservoir next to this is the salt mixing tank. There is a third reservoir capable of holding 200 gallons of prepared saltwater that is used for salt water storage.



The picture above shows two lines coming into the saltwater reservoir. The line that is currently connected is a loop from the pump attached at the bottom of the saltwater mixing tank. This pump runs for 10 minutes every 4 hours just to ensure that the water doesn’t sit in the pipes. It can also be turned on as needed when I am moving water out of this tank.

The line that isn’t hooked up to anything is for RO/DI water from the other reservoir. This comes into play only when the lid is off as shown in the next pictures.



Inside the saltwater mixing tank there are two Korallia Evolution 1400GPH pumps. These run continuously to ensure the water is constantly agitated, but the primary function is to facilitate rapid mixing of salt. Consider that this is 2800GPH of flow in a 50 gallon tank. That’s over 50X turnover. The pumps are directed at the bottom of the reservoir to keep the salt suspended and avoid settling.

Note: Since taking this picture, I have found that by angling both powerheads inwards towards the wall of the barrel, I can create a circular water current similar to a whirlpool. This allows the flow to be cumulative instead of canceling. I've found that this is more effective at keeping unmixed salt in suspension.

I also used a paint mixer attached to a drill when adding salt to the mixing tank. It takes me about 10 minutes to make up a batch of saltwater. I would always try to wait 24 hours before using the new saltwater, but in a pinch it would probably be suitable for use after about an hour.



To allow the lid to close, the power cords had to be routed through a hole I drilled in the reservoir.

.

In these pictures, you can see the clear tubing on the outside of the reservoirs. These enable the water level to be observed without opening the reservoir. They are attached with threaded bulkheads and an L shaped MPT to barbed hose adapter. There is some Velcro that easily slides along the tubing that I use to mark the water levels. I’ve also taking the time to calculate and mark increments of 5 gallons on the tubes so that I can keep track of how much water I’m using.

Another detail in the above pictures is the platforms and leveling feet. Each reservoir has it’s own platform and is leveled independently. These are the heavy duty feet from Lee Valley that someone else pointed out in another thread (thank you). One of the requirements of installing all of this equipment is that it be removable if/when we want to replace the furnace or hot water tank. I won’t be fun to take it all apart, but it also won’t be difficult.



As I’m not a plumber, the only way I could hook up the sink was to the drain in the furnace room. This works well enough. At some point I may have a plumber come and hook it up to the main drain, but I have no plans for that yet.

Note: It was pointed out that the way my sink drains is actually against building code.



These taps (left) allow me to pump out either RO/DI or saltwater into the sink. More to the point, I can fill a bucket from here. Their positioning is adjustable by loosening the union - they are pushed out of the way when not in use.

Last edited by abcha0s; 02-23-2011 at 03:50 PM.
Reply With Quote
  #2  
Old 07-15-2010, 05:24 AM
abcha0s's Avatar
abcha0s abcha0s is offline
Member
 
Join Date: Jan 2010
Location: Calgary
Posts: 545
abcha0s is on a distinguished road
Default Continuous Water Change

This post is part 2 of 2 dealing with water changes. This post may be somewhat long, but for anyone setting up a similar system, hopefully it is interesting.

Continuous Water Change System

“Continuous water changes, despite their name, are not necessarily performed every minute of every day. The distinguishing feature of these changes is that water is added at the same time that it is removed. The actual rate of addition can be high or low. Reef aquarists (myself included) most often perform these types of water changes with two matched pumps, one that removes the old water and one that adds the new water.” - Randy Holmes Fraley

Water Changes in Large Tanks

I’m sure that almost everyone does water changes on their tanks, or at least wishes they could find the motivation. The number that I’ve heard most often is 30% monthly. The diligent hobbyist tends to achieve this by performing weekly changes of 7-10% of the total system volume. There is lots of literature that promotes this and most people generally accept it as a requirement.

Water changes in large tanks seem to be thought of slightly differently. The bigger the tank, the harder it is to keep up with 30% monthly water changes. It may be that the overall benefit to the system also changes. Many large public and commercial tanks have such efficient filtration that water changes are rarely required. Calcium and other trace elements can be supplemented and there are other more effective means of nutrient export.

A good example of this is Inland Aquatics who claim to have 40,000 gallons of water and change only 5% annually.

* Over time I may experiment with reducing the volume of water that is exchanged every day. With a new tank, I personally feel that water changes will be an important part of maintaining overall stability. Once the tank has matured, the cost may start to outweigh the benefits.

System Goals

Basically, I never want to do another water change again. There’s nothing stopping me from siphoning detritus or doing emergency water changes, but the week to week changes that are typically a never ending part of this hobby just don’t work for me.
Total System Water Volume = 300 Gallons (1,136 Liters)
Percent Water Change = 33% Monthly
Total Monthly Change = 100 Gallons (379 Liters)
Total Daily Change = 3.33 Gallons (12.62 Liters)
The system can run unattended for 60 days. Realistically, I will top up the reservoirs and ensure everything is calibrated once a month, but it’s nice to have extra time as needed.

• Simple is best

Water Storage

There has been some debate as to whether it is reasonable to store saltwater for extended periods of time. I am confident that if you have a clean vessel suitable for storing potable water and no contaminates are introduced that it can effectively be stored indefinitely.



The dimensions of this loaf tank are 58"Lx29"Wx37"H. It was made by paddleplastics - www.paddleplastics.com - I picked it up in Crossfield from Promould: 403-946-9920

The tank comes with a mainway and a bulkhead that can be installed at the time of purchase. I had Promould put the mainway on, but I put the bulkheads on myself. I installed the bulkheads on the bottom of the tank to allow maximum drainage.

Note: It’s somewhat important to mix the saltwater in a separate tank from the one used for ongoing storage. From observation, it can be seen that the mixing tank gets dirty from particles settling out of the newly mixed saltwater. By allowing this to happen in the mixing tank before transferring to the storage tank, very little contamination is transferred. My storage tank stays very clean whereas my mixing tank needs to be cleaned somewhat regularly.

Peristaltic Pumps and System Pressure

Even high quality peristaltic pumps are incredibly sensitive to changes in pressure at both the intake and the outtake. A reservoir slowly draining will cause a pressure variance at the intake of the pump as a factor of the water volume remaining in the reservoir. As the reservoir drains, pressure will decrease and the rate of flow through the pump will decrease.

To overcome this characteristic of peristaltic pumps, pressure within the system must be a constant. After considerable research into high tech solutions, I came up with a low tech solution that works perfectly. It's basically a constant pressure regulator that helps ensure the pumps stay balanced.



The water cooler can be purchased at Canadian Tire. Basically, the water enters at the top and fills the cooler to the point where the float valve shuts off the flow of water. As water is pumped out, new water from the main reservoir will replace it. There is a John Guest fiiting at the bottom of the water cooler that allows the peristaltic pump to connect at a low water point.

.

I know that you can get John Guest bulkheads, but they aren't really suitable here. The trouble with these bulkheads is they are difficult to tighten without access to both sides. The trick to installing the threaded adapter is make the hole using a drill bit slightly smaller than the size of the fitting such that it threads into the plastic. I used glue on the joint to ensure a permanent seal.

SpectraPure LiterMeter III Paristaltic Pump

I've tested a number of peristaltic pumps and the SpectraPure LiterMeter III system is, in my opion, by far the best. A good quality peristaltic pump is really important when setting up a continuous water change system or there will be a high probability of drift and/or premature system failure.

From the manufacturer’s description - "The new aquarium dosing pump is crafted from precision-machined aluminum fabricated to exacting aerospace tolerances. For example, such critical tolerances as the rollers are machined to +/-0.0005". The outer surface is polished to a mirror finish. Internal surfaces are held to a 63 micro inch finish and hard anodized to provide a durable and low-friction raceway. The pump's planetary direct drive is at an 11:1 ratio, thus providing enough torque to generate over 40 pounds of pressure. This incredible lift enables the LiterMeter III™ to pump over 60 feet above itself at a flow rate of over 250 ml/min. It can also draw up from 25 feet below. The motor in the LiterMeter III™ is made by a manufacturer of precision high reliability motors made to our specifications as a peristaltic drive motor. The pump is so reliable we now offer a five year limited warranty."

Some additional features that were important to me include:
  • Calibrated by volume not time
  • Remote pump support
  • Programming will survive a power outage
  • Ability to adjust dosing volumes on each pump independently by as little as 10ml/day without recalibrating
  • Automatically tracks pump run time and will beep after 300 hours
  • The desired daily volume is dosed in 150 equal parts throughout the course of one day

The System

The whole system really isn't complicated at all.



Black Tubing = Water from tank heading for the drain


On the tank side, I hooked up to the first chamber in my sump. This chamber has a constant water level and as such, the pressure will always remain the same.



The water is drawn up by Pump A (built into the controller) through about 10 feet of 1/4 inch polyethylene tubing. The total vertical rise is only about 3 feet. This is then pumped through another 30 feet of tubing through the ceiling and eventually to the drain.
Red Tubing = Water from reservoir heading for the tank
The reservoir has two bulkheads installed on the bottom. One is connected to a large Panworld pump (picture not shown) which is used to agitate the water once every 4 hours. It can also be used to pump water into the main tank for larger water changes.



The second bulkhead (shown above) has a John Guest fitting which connects to the pressure regulator water cooler. The floor of the main resevoir is elevated to approximately the same hight as the float valve installed in the water cooler thus allowing the main resevoir to completely drain.

This bulkhead also has an attachment for a drain line as can be seen by the cap at the end. The plumbing for the drain is stored detached to keep it out of the way, but can be easily reconnected as needed. The drain can be used in an emergency or for periodically cleaning the loaf tank.

. .

The remote LiterMeter pump pulls water from the pressure regulator water cooler and pushes it back to the tank through approximately 40 feet of tubing ran through the ceiling.
One interesting observation is that the run from the reservoir to the tank seems to have considerably more resistance. The calibrated flow rate through the LiterMeter pump B is about 80% of the calibrated flow rate through Pump A.

Heating the Reservoir

Heating the reservoir is not necessary. I keep a couple of spare heaters that could be used to heat the water in the reservoir if an emergency situation arose, but because of the very small volumes of water that are added to the main display tank, there is no measurable affect on temperature.

Tuning

The LiterMeter pumps are calibrated by volume. To accomplish this, the system asks you to fill a 500ml vessel and to stop the pump when complete. Once set, the system adjusts the calculated flow rate through each pump accordingly.

I found this difficult as the output of my tubing is nowhere near the controller. To overcome this challenge, I set the pumps to run continuously and timed how long it took to fill the 500ml. I repeated the test a number of times until I had an average that was within a reasonable margin of error. When I ran the calibration routine, I simply started a stop watch at the start of the test and stopped the pump at the appropriate time.
500ml - Pump A = 2.07s
500ml - Pump B = 2.47s
Once calibrated, you can then set the run time for each pump indendantly. Everything is done in metric. The initial configuration to achieve my desired rate of water exchange is:
Pump A: 12.62 liters per day.
Pump B: 12.62 liters per day.
The only reason we really care about precise calibration is to avoid any drift in salinity.
The SG of the saltwater in the storage reservoir is 1.025
The SG of the saltwater in the tank is 1.025
If the pumps are perfectly calibrated, then the tank will stay stable at 1.025.
  • If there is a calibration error causing a slow increase in salinity, then the daily volume for pump A can be increased (or pump B decreased).
  • If there is a calibration error causing a slow decrease in salinity, then the daily volume for pump B can be increased (or pump A decreased).
It's a little like guessing a number between 1 and 10 where the person who knows the number answers with "higher" or "lower".

The only other consideration is evaporation of tank water and the ATO. Ideally, this would be unaffected by the water change system as the volume of water in and out of the tank is balanced. However, if the margin of error is too high, the rate of evaporation could exceed the variance or vice versa. In any event, this is unlikely and the solution would be to recalibrate the pumps.

Safety

There are a couple of scenarios that warrant additional consideration.

Pump Failure or full blockage
These pumps are quiet. Without periodically checking, a failed pump could go unnoticed for weeks. The result would be a a proportionately rapid shift in salinity.

This scenario would not be immediately evident as the ATO would maintain a constant water level.

To mitigate this requires some diligence. Operation of the pumps should be checked at a minimum of every couple of days.

* I am considering installing flow sensors on the lines and connecting them to my Apex controller. I have one already that I am not using, but also haven't tested it yet. If I can trigger an alarm based on a period of inactivity, it may solve this problem.
Calibration drift or partial blockage
This would only be detectable through measuring salinity. Any unexpected change in salinity could likely be attributed to either calibration drift or a partial blockage of one of the lines.
  • When the pumps are flagged for maintainence (every 300 hours), all of the lines should be cleaned to prevent salt buildup.
  • Every second servicing, all of the lines should be replaced.
  • Once a month, the time it takes to fill 500ml should be recorded. If there is a variance greater than 2 or 3 seconds then the lines should be cleaned and the pumps recalibrated.
Dry Reservoir
This one is pretty easy to deal with. The reservoir is very large so simply spot checking should be sufficient. However, I also plan to install a level sensor into the pressure regulating water cooler. If the water level drops for any reason, the Apex controller can alert me.
The system is expected to run for extended periods of time without requiring any adjustments. However, it does require some monitoring to ensure that all systems are opperating as expected.

Last edited by abcha0s; 03-09-2011 at 12:57 PM.
Reply With Quote
  #3  
Old 07-16-2010, 06:00 AM
Greenmaster Greenmaster is offline
Member
 
Join Date: Jul 2010
Location: Courtenay, BC Canada
Posts: 448
Greenmaster is on a distinguished road
Default

Definitely a sweet tank... are you doing the bottom bracing as well or are you done the tank?
When you gonna water test it?
__________________
Sometimes life is best left to it's own devices.
If your not happy at what you're looking at, you're looking at it the wrong way.
My 320g DIY Build in progress watch at ----> http://www.canreef.com/vbulletin/showthread.php?t=66154
Reply With Quote
  #4  
Old 07-16-2010, 06:32 AM
the marine apprentice's Avatar
the marine apprentice the marine apprentice is offline
Member
 
Join Date: Apr 2009
Location: Lacombe
Posts: 373
the marine apprentice is on a distinguished road
Default

very impressive. all i have to say at the moment.
__________________
4' custom tank all starfire. End overflow
2 AI sols
reef keeper lite
mp40wes
Diablo skimmer
Mag 12 return pump also feeding two reactors
Reply With Quote
  #5  
Old 07-16-2010, 02:02 PM
abcha0s's Avatar
abcha0s abcha0s is offline
Member
 
Join Date: Jan 2010
Location: Calgary
Posts: 545
abcha0s is on a distinguished road
Default

Quote:
Originally Posted by Greenmaster View Post
Definitely a sweet tank... are you doing the bottom bracing as well or are you done the tank?
When you gonna water test it?
The bottom bracing is in place. It's somewhat subtle and perhaps hard to make out in the pictures. It has silicone on all 4 edges of the glass, so it somewhat blends in. These aren't really for strength as much as for adhesion. The structural integrity is still primarily the glass panes.

As for water testing - I have to slow down a bit for the next while. I may fill it with ro/di water and do an extended leak test over the summer, but plumbing in the sump and adding salt will have to wait for now.
Reply With Quote
  #6  
Old 07-17-2010, 02:27 AM
Greenmaster Greenmaster is offline
Member
 
Join Date: Jul 2010
Location: Courtenay, BC Canada
Posts: 448
Greenmaster is on a distinguished road
Default

Quote:
Originally Posted by abcha0s View Post
The bottom bracing is in place. It's somewhat subtle and perhaps hard to make out in the pictures. It has silicone on all 4 edges of the glass, so it somewhat blends in. These aren't really for strength as much as for adhesion. The structural integrity is still primarily the glass panes.

As for water testing - I have to slow down a bit for the next while. I may fill it with ro/di water and do an extended leak test over the summer, but plumbing in the sump and adding salt will have to wait for now.
A weak point of the tank is typically the joints. I'm glad to hear you strengthened them ... I would hate to see your fish flopping on the floor.
__________________
Sometimes life is best left to it's own devices.
If your not happy at what you're looking at, you're looking at it the wrong way.
My 320g DIY Build in progress watch at ----> http://www.canreef.com/vbulletin/showthread.php?t=66154
Reply With Quote
  #7  
Old 07-17-2010, 04:01 PM
SAMSHUNG's Avatar
SAMSHUNG SAMSHUNG is offline
Member
 
Join Date: May 2010
Location: Vancouver
Posts: 51
SAMSHUNG is on a distinguished road
Default

EPIC-ness!!!

(subscribing the s#it out of this thread.)
Reply With Quote
  #8  
Old 07-15-2010, 05:25 AM
abcha0s's Avatar
abcha0s abcha0s is offline
Member
 
Join Date: Jan 2010
Location: Calgary
Posts: 545
abcha0s is on a distinguished road
Default Electrical



<More detail coming soon>

Last edited by abcha0s; 03-29-2011 at 08:12 PM.
Reply With Quote
  #9  
Old 07-15-2010, 05:25 AM
abcha0s's Avatar
abcha0s abcha0s is offline
Member
 
Join Date: Jan 2010
Location: Calgary
Posts: 545
abcha0s is on a distinguished road
Default Sequencing and Automation



<more detail coming soon>

Last edited by abcha0s; 03-29-2011 at 09:04 PM.
Reply With Quote
  #10  
Old 07-15-2010, 05:26 AM
abcha0s's Avatar
abcha0s abcha0s is offline
Member
 
Join Date: Jan 2010
Location: Calgary
Posts: 545
abcha0s is on a distinguished road
Default Neptune Apex Controller(s)

I have a love hate relationship with my Neptune Apex Controllers. I love the features and what they are capable of, but I just don't trust them long term unattended. I haven't really had a problem - so to speak - but every now and then they do weird things.

My biggest complaint with the system has to be with the Triac based outlets (1-3, 5-7) on the EB8. I have had all kinds of problems with these outlets not properly shutting off. I engaged Neptune support about this and while they were responsive, they basically told me that I was crazy. Honestly - they just wouldn't believe the problems I was having. I did get this official response:

Quote:
It is not the size of the load that determines whether or not the triac has trouble shutting it off. It is the power factor (how much current lags voltage), that causes the problem. Some inductive loads (motors) do no power factor correction and that is why the issue is mostly with small pumps. Larger pumps have power factor correction.

These are the ways to solve the problem:
  • Plug an additional load (small light bulb/wall wart transformer/fan) in parallel with the load.
  • Use a socket expansion box to control the device.
  • Use a DC4 or DC4HD to control the device.
Now of course they have the EB4 which also solves this problem.

Anyways...

I have elected to use two Apex Controllers on my system. The Intent is such that if one fails, the other will continue to operate. The two systems are electrically isolated.

Any of the systems which would be deemed critical, should be split across the two controllers.
Controller A - Return Pump 1, Heater 1, Heater 2, Skimmer Pump 1, ATO 1, Auto Feeder 1
Controller B - Return Pump 2, Heater 3, Heater 4, Skimmer Pump 2, ATO 2, Auto Feeder 2
The following section documents the configuration and application of the Neptune Apex Controllers. Keep in mind that this is a work in progress. I will keep this page updated as the program is expanded and enhanced.

Please - If you see obvious errors or ways in which I could improve the code, please let me know.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Neptune Systems Apex Controller - Primary
Attached Probes: Tank pH, Tank Temp, Tank Orp
Attached Modules: 2 x EB8, Breakout Box
Attached Switches: 6
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Profiles

Day-R
type:Pump
minIntensity: 40
maxIntensity: 100
sync: Enable
div10: Disable
intOffTime: 88
OnTime: 88
OffTime: 0
Day-L
type:Pump
minIntensity: 40
maxIntensity: 100
sync: Enable
div10: Disable
intOffTime: 0
OnTime: 88
OffTime: 88

Variable Speed Outlets

VS1_Tunze-L (VAR 1)
Set Day-L
If Time 00:00 to 23:59 Then Day-L
If FeedA 004 Then OFF
VS2_Tunze-R (VAR 2)
Set Day-R
If Time 00:00 to 23:59 Then Day-R
If FeedA 004 Then OFF
VS3_Wavebox (VAR 3)
Set OFF
Fallback OFF
If Outlet MorningCalm = ON Then ON
VarSpd4_I4 (VAR 4)
Not currently used

Variable Speed Outlets

SndAlm_I6
Set OFF
SndWrn_I7
Set OFF
EmailAlm_I5
Set OFF
If Temp > 82.0 Then ON
If Temp < 75.0 Then ON

Virtual Outlets - Used for programming

MorningCalm
Fallback OFF
Set OFF
If Time 04:00 to 10:00 Then ON

EB8 - Left Side of Tank

Skimmer-T1
Fallback ON
Set ON
Skimmer-T2
Fallback ON
Set ON
Pump-Pellets
Fallback ON
Set ON
Unused-4_4
Fallback ON
Set ON
Unused-4_5
Fallback ON
Set ON
Unused-4_6
Fallback ON
Set ON
Unused-4_7
Fallback ON
Set ON
Unused-4_8
Fallback ON
Set ON

EB8 - Right Side of Tank

Pump_ReturnL
Fallback ON
Set ON
Pump_ReturnR
Fallback ON
Set ON
Light_Temp
Fallback OFF
Set OFF
If Time 09:30 to 21:30 Then ON
If Temp > 82.0 Then OFF
Min Time 030:00 Then OFF
Light_Fuge
Fallback OFF
Set OFF
If Time 21:25 to 10:00 Then ON
If Temp > 81.0 Then OFF
Min Time 030:00 Then OFF
Heater1
Fallback OFF
If Temp < 77.8 Then ON
If Temp > 78.0 Then OFF
Heater2
Fallback OFF
If Temp < 77.8 Then ON
If Temp > 78.0 Then OFF
Heater3
Fallback ON
Set ON
If Temp < 77.8 Then ON
If Temp > 78.0 Then OFF
Heater4
Fallback ON
Set ON
If Temp < 77.8 Then ON
If Temp > 78.0 Then OFF
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Neptune Systems Apex Controller Lite - Secondary
Attached Probes: n/a
Attached Modules: n/a
Attached Switches: n/a
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

This controller is currently in use on my 90G tank and will remain there until the tank is shut down. I will update the configuration when the controller comes online.

Last edited by abcha0s; 03-29-2011 at 08:59 PM.
Reply With Quote
Reply

Tags
custom tank, deep dimension, high end, redundant, reef


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump


All times are GMT. The time now is 12:27 PM.


Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.